Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets

Author:

Wang Yuxi,Lin ZhaohuiORCID,Wu Chenglai

Abstract

Various cloud cover products have been developed over the past few decades, but their uncertainties have not been sufficiently assessed, especially at a regional scale, which is vital for the application of satellite products to climate studies. In this study, we compare the spatial–temporal variability of the cloud amount over China from the 11 datasets provided by the Global Energy and Water Cycle Experiment (GEWEX) cloud assessment project at a horizontal resolution of 1° × 1° from the 1980s to 2000s, using the site data as a reference. The differences among these datasets are quantified in terms of the standard deviations and the correlation coefficients between different datasets. Most of the datasets show a similar spatial distribution of total cloud amounts (TCAs), but their magnitudes differ. The standard deviations of the annual, winter, and summer mean TCA are approximately 9–18% for the regional mean TCAs over the four typical regions of China, including the northwestern region (NW), northeastern region (NE), Tibetan Plateau region (TP), and southern China region (SC), with the largest standard deviations of 13–18% in the TP. By analyzing the factors that influence the satellite inversion data, such as the observation instrument, inversion algorithm, and observation time, we found that the difference caused by the observation instrument or algorithm is greater than the effect of the observation time, and the satellite cloud datasets with better recognition capability for cloud types show lower uncertainties when compared with the station observation. In terms of seasonal cycle, except HIRS and MODIS-ST, most satellite datasets can reproduce the observed seasonal cycle with the largest TCA in summer and the smallest TCA in autumn and winter. For the interannual variation, ISCCP-D1, MODIS-CE, and MODIS-ST are most consistent with the site data for the annual mean TCA, and two of the remaining datasets (PATMOSX and TOVSB) show more consistent temporal variations with the site observation in summer than in winter, especially over NW and NE regions. In general, MODIS-CE shows the best performance in reproducing the spatial pattern and interannual variation of TCA amongst the 11 satellite datasets, and PATMOSX, MODIS-ST, CALIPSO-GOCCP, and CALIPSO-ST also show relatively good performance.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3