Extraction of Micro-Doppler Feature Using LMD Algorithm Combined Supplement Feature for UAVs and Birds Classification

Author:

Dai TingORCID,Xu Shiyou,Tian BiaoORCID,Hu Jun,Zhang Yue,Chen Zengping

Abstract

In the past few decades, the demand for reliable and robust systems capable of monitoring unmanned aerial vehicles (UAVs) increased significantly due to the security threats from its wide applications. During UAVs surveillance, birds are a typical confuser target. Therefore, discriminating UAVs from birds is critical for successful non-cooperative UAVs surveillance. Micro-Doppler signature (m-DS) reflects the scattering characteristics of micro-motion targets and has been utilized for many radar automatic target recognition (RATR) tasks. In this paper, the authors deploy local mean decomposition (LMD) to separate the m-DS of the micro-motion parts from the body returns of the UAVs and birds. After the separation, rotating parts will be obtained without the interference of the body components, and the m-DS features can also be revealed more clearly, which is conducive to feature extraction. What is more, there are some problems in using m-DS only for target classification. Firstly, extracting only m-DS features makes incomplete use of information in the spectrogram. Secondly, m-DS can be observed only for metal rotor UAVs, or large UAVs when they are closer to the radar. Lastly, m-DS cannot be observed when the size of the birds is small, or when it is gliding. The authors thus propose an algorithm for RATR of UAVs and interfering targets under a new system of L band staring radar. In this algorithm, to make full use of the information in the spectrogram and supplement the information in exceptional situations, m-DS, movement, and energy aggregation features of the target are extracted from the spectrogram. On the benchmark dataset, the proposed algorithm demonstrates a better performance than the state-of-the-art algorithms. More specifically, the equal error rate (EER) proposed is 2.56% lower than the existing methods, which demonstrates the effectiveness of the proposed algorithm.

Funder

Zengping Chen

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3