Spatial Negative Co-Location Pattern Directional Mining Algorithm with Join-Based Prevalence

Author:

Zhou GuoqingORCID,Wang Zhenyu,Li Qi

Abstract

It is usually difficult for prevalent negative co-location patterns to be mined and calculated. This paper proposes a join-based prevalent negative co-location mining algorithm, which can quickly and effectively mine all the prevalent negative co-location patterns in spatial data. Firstly, this paper verifies the monotonic nondecreasing property of the negative co-location participation index (PI) value as the size increases. Secondly, using this property, it is deduced that any prevalent negative co-location pattern with size n can be generated by connecting prevalent co-location with size 2 and with an n − 1 size candidate negative co-location pattern or an n − 1 size prevalent positive co-location pattern. Finally, the experiment results demonstrate that while other conditions are fixed, the proposed algorithm has an excellent efficiency level. The algorithm can eliminate the 90% useless negative co-location pattern maximumly and eliminate the useless 40% negative co-location pattern averagely.

Funder

National Natural Science of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3