Predicting Tree Mortality Using Spectral Indices Derived from Multispectral UAV Imagery

Author:

Bergmüller Kai O.ORCID,Vanderwel Mark C.

Abstract

Past research has shown that remotely sensed spectral information can be used to predict tree health and vitality. Recent developments in unmanned aerial vehicles (UAVs) have now made it possible to derive such information at the tree and stand scale from high-resolution imagery. We used visible and multispectral bands from UAV imagery to calculate a set of spectral indices for 52,845 individual tree crowns within 38 forest stands in western Canada. We then used those indices to predict the mortality of these canopy trees over the following year. We evaluated whether including multispectral indices leads to more accurate predictions than indices derived from visible wavelengths alone and how the performance varies among three different tree species (Picea glauca, Pinus contorta, Populus tremuloides). Our results show that spectral information can be effectively used to predict tree mortality, with a random forest model producing a mean area under the receiver operating characteristic curve (AUC) of 89.8% and a balanced accuracy of 83.3%. The exclusion of multispectral indices worsened the model performance, but only slightly (AUC = 87.9%, balanced accuracy = 81.8%). We found variation in model performance among species, with higher accuracy for the broadleaf species (balanced accuracy = 85.2%) than the two conifer species (balanced accuracy = 73.3% and 77.8%). However, all models overpredicted tree mortality by a major degree, which limits the use for tree mortality predictions on an individual level. Further improvements such as long-term monitoring, the use of hyperspectral data and cost-sensitive learning algorithms, and training the model with a larger and more balanced data set are necessary. Nevertheless, our results demonstrate that imagery from UAVs has strong potential for predicting annual mortality for individual canopy trees.

Funder

Natural Sciences and Engineering Research Council

Mitacs

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3