Analysis and Simulation of Land Use Changes and Their Impact on Carbon Stocks in the Haihe River Basin by Combining LSTM with the InVEST Model

Author:

Lin Yanzhen1,Chen Lei1,Ma Ying1,Yang Tingting1

Affiliation:

1. College of Geography and Environmental Science, Tianjin Normal University, Tianjin 300387, China

Abstract

The quantitative analysis and prediction of spatiotemporal patterns of land use in Haihe River Basin are of great significance for land use and ecological planning management. To reveal the changes in land use and carbon stock, the spatial–temporal pattern of land use data in the Haihe River Basin from 2000 to 2020 was studied via Mann–Kendall (MK) trend analysis, the transfer matrix, and land use dynamic attitude. Through integrating the models of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) and the Long Short-Term Memory (LSTM), the results of the spatial distribution of land use and carbon stock were obtained and compared with Cellular Automation (CA-Markov), and then applied to predict the spatial distribution in 2025. The results show the following: (1) The land use and land cover (LULC) changes in the Haihe River Basin primarily involve an exchange between cultivated land, forest, and grassland, as well as the conversion of cultivated land to built-up land. This transformation contributes to the overall decrease in carbon storage in the basin, which declined by approximately 1.20% from 2000 to 2020. (2) The LULC prediction accuracy of LSTM is nearly 2.00% higher than that of CA-Markov, reaching 95.01%. (3) In 2025, the area of grassland in Haihe River Basin will increase the most, while the area of cultivated land will decrease the most. The spatial distribution of carbon stocks is higher in the northwest and lower in the southeast, and the changing areas are scattered throughout the study area. However, due to the substantial growth of grassland and forest, the carbon stocks in the Haihe River Basin in 2025 will increase by about 10 times compared with 2020. The research results can provide a theoretical basis and reference for watershed land use planning, ecological restoration, and management.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3