Abstract
We investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference32 articles.
1. Sur une théorème de géometrie et ses applications aux équations dérivées partielles du type elliptique;Bernstein;Comm. Soc. Math. Kharkov,1915
2. Minimal cones and the Bernstein problem
3. Maximal Space-like Hypersurfaces in the Lorentz-Minkowski Spaces
4. The Cauchy Problem;Choquet-Bruhat,1980
5. Maximal hypersurfaces and foliations of constant mean curvature in general relativity
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献