Abstract
In the context of the nationwide call for “energy savings” in China, it is desirable to establish a more accurate forecasting model to manage the electricity consumption from the university dormitory, to provide a suitable management approach, and eventually, to achieve the “green campus” policy. This paper applies the empirical mode decomposition (EMD) method and the quantum genetic algorithm (QGA) hybridizing with the support vector regression (SVR) model to forecast the daily electricity consumption. Among the decomposed intrinsic mode functions (IMFs), define three meaningful items: item A contains the terms but the residual term; item B contains the terms but without the top two IMFs (with high randomness); and item C contains the terms without the first two IMFs and the residual term, where the first two terms imply the first two high-frequency part of the electricity consumption data, and the residual term is the low-frequency part. These three items are separately modeled by the employed SVR-QGA model, and the final forecasting values would be computed as A + B − C. Therefore, this paper proposes an effective electricity consumption forecasting model, namely EMD-SVR-QGA model, with these three items to forecast the electricity consumption of a university dormitory, China. The forecasting results indicate that the proposed model outperforms other compared models.
Funder
National Social Science Fund Youth Project
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献