Abstract
In this paper, we introduce a family of bivariate α , q -Bernstein–Kantorovich operators and a family of G B S (Generalized Boolean Sum) operators of bivariate α , q -Bernstein–Kantorovich type. For the former, we obtain the estimate of moments and central moments, investigate the degree of approximation for these bivariate operators in terms of the partial moduli of continuity and Peetre’s K-functional. For the latter, we estimate the rate of convergence of these G B S operators for B-continuous and B-differentiable functions by using the mixed modulus of smoothness.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献