Abstract
If G is a graph, its Laplacian is the difference between the diagonal matrix of its vertex degrees and its adjacency matrix. A one-edge connection of two graphs G 1 and G 2 is a graph G = G 1 ⊙ u v G 2 with V ( G ) = V ( G 1 ) ∪ V ( G 2 ) and E ( G ) = E ( G 1 ) ∪ E ( G 2 ) ∪ { e = u v } where u ∈ V ( G 1 ) and v ∈ V ( G 2 ) . In this paper, we study some structural conditions ensuring the presence of 2 in the Laplacian spectrum of bicyclic graphs of type G 1 ⊙ u v G 2 . We also provide a condition under which a bicyclic graph with a perfect matching has a Laplacian eigenvalue 2. Moreover, we characterize the broken sun graphs and the one-edge connection of two broken sun graphs by their Laplacian eigenvalue 2.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献