Abstract
Many basic laws of physics or chemistry can be written in the form of differential equations. With the development of digital signals and computer technology, the research on discrete models has received more and more attention. The estimates of the unknown coefficients in the discretized difference equation can be obtained by optimizing certain criterion functions. In modern control theory, the state-space model transforms high-order differential equations into first-order differential equations by introducing intermediate state variables. In this paper, the parameter estimation problem for linear difference equation systems with uncertain noise is developed. By transforming system equations into state-space models and on the basis of the considered priors of the noise and parameters, a variational Bayesian iterative estimation algorithm is derived from the observation data to obtain the parameter estimates. The unknown states involved in the variational Bayesian algorithm are updated by the Kalman filter. A numerical simulation example is given to validate the effectiveness of the proposed algorithm.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献