Integrin α6β4 Confers Doxorubicin Resistance in Cancer Cells by Suppressing Caspase-3–Mediated Apoptosis: Involvement of N-Glycans on β4 Integrin Subunit

Author:

Kariya Yoshinobu1,Gu Jianguo2ORCID,Kariya Yukiko3

Affiliation:

1. Department of Biochemistry, Fukushima Medical University, Fukushima City 960-1295, Japan

2. Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Komatsushima 981-8558, Japan

3. Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima City 960-1295, Japan

Abstract

Drug resistance is a major obstacle to successful cancer treatment. Therefore, it is essential to understand the molecular mechanisms underlying drug resistance to develop successful therapeutic strategies. α6β4 integrin confers resistance to apoptosis and regulates the survival of cancer cells; however, it remains unclear whether α6β4 integrin is directly involved in chemoresistance. Here, we show that α6β4 integrin promotes doxorubicin resistance by decreasing caspase-3–mediated apoptosis. We found that the overexpression of α6β4 integrin by the β4 integrin gene rendered MDA-MB435S and Panc-1 cells more resistant to doxorubicin than control cells. The acquired resistance to doxorubicin by α6β4 integrin expression was abolished by the deletion of the cytoplasmic signal domain in β4 integrin. Similar results were found in MDA-MB435S and Panc-1 cells when N-glycan-defective β4 integrin mutants were overexpressed or bisecting GlcNAc residues were increased on β4 integrin by the co-expression of N-acetylglucosaminyltransferase III with β4 integrin. The abrogation of α6β4 integrin-mediated resistance to doxorubicin was accompanied by reduced cell viability and an increased caspase-3 activation. Taken together, our results clearly suggest that α6β4 integrin signaling plays a key role in the doxorubicin resistance of cancer cells, and N-glycans on β4 integrin are involved in the regulation of cancer cells.

Funder

Japan Society for Promotion of Science KAKENHI

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3