Albumin Thiolation and Oxidative Stress Status in Patients with Aortic Valve Stenosis

Author:

Savini Carlo12ORCID,Tenti Elena1ORCID,Mikus Elisa1,Eligini Sonia3ORCID,Munno Marco3,Gaspardo Anna3,Gianazza Erica3ORCID,Greco Arianna3,Ghilardi Stefania3,Aldini Giancarlo4ORCID,Tremoli Elena1,Banfi Cristina3ORCID

Affiliation:

1. GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy

2. Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy

3. Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy

4. Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy

Abstract

Recent evidence indicates that reactive oxygen species play an important causative role in the onset and progression of valvular diseases. Here, we analyzed the oxidative modifications of albumin (HSA) occurring on Cysteine 34 and the antioxidant capacity of the serum in 44 patients with severe aortic stenosis (36 patients underwent aortic valve replacement and 8 underwent a second aortic valve substitution due to a degenerated bioprosthetic valve), and in 10 healthy donors (controls). Before surgical intervention, patients showed an increase in the oxidized form of albumin (HSA-Cys), a decrease in the native reduced form (HSA-SH), and a significant reduction in serum free sulfhydryl groups and in the total serum antioxidant activity. Patients undergoing a second valve replacement showed levels of HSA-Cys, free sulfhydryl groups, and total antioxidant activity similar to those of controls. In vitro incubation of whole blood with aspirin (ASA) significantly increased the free sulfhydryl groups, suggesting that the in vivo treatment with ASA may contribute to reducing oxidative stress. We also found that N-acetylcysteine and its amide derivative were able to regenerate HSA-SH. In conclusion, the systemic oxidative stress reflected by high levels of HSA-Cys is increased in patients with aortic valve stenosis. Thiol–disulfide breaking agents regenerate HSA-SH, thus paving the way to the use these compounds to mitigate the oxidative stress occurring in the disease.

Funder

Italian Ministry of Health, Italy

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3