Nitriding Behaviour and Microstructure of High-Nitrogen Stainless Steel during Selective Laser Melting

Author:

Sun Xin1ORCID,Ren Jianbiao1,Wang Yachao1,Zhao Dingguo1,Wang Shuhuan1,Xiong Xiaojing2,Rao Jeremy Heng2ORCID

Affiliation:

1. School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063009, China

2. Ji Hua Laboratory, Institute of Advanced Additive Manufacturing, Foshan 528200, China

Abstract

High-nitrogen stainless steels are widely used due to their excellent comprehensive performance. In this study, the effects of process parameters (laser power, scanning speed, and cavity pressure) on the formation of high-nitrogen stainless steels were studied by using conventional selective laser melting and high-pressure selective laser melting (HPSLM). The nitrogen content, nitrogen emission, phase composition, microstructure, and microhardness of the high-nitrogen stainless steel samples obtained through selective laser melting (SLM) were analysed by using an oxygen/nitrogen/hydrogen analyser, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The results showed that the maximum nitrogen emission in the SLM sample was 0.175 wt.%, the emission rate reached up to 54.7%, and the maximum nitrogen content in the HPSLM sample was 1.07 wt.%. There was no significant difference between the phase peak positions of the SLM samples with different laser powers and the original powder. The main phase of the HPSLM sample changed at 0.3 MPa (from α-Fe to γ-Fe phase); the microstructure of the SLM sample was mainly composed of columnar and cellular crystals, and columnar crystal bands formed along the direction of heat flow. The HPSLM sample was mainly composed of equiaxed crystals with a grain size of 10–15 μm. At an energy density of 136 J/mm3, the microhardness and relative density reached their peak values of 409 HV and 98.85%, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Research project of basic scientific research expenses of Hebei Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3