Effect of NO2 Aging on the Surface Structure and Thermal Stability of Silicone Rubber with Varying Al(OH)3 Contents

Author:

Fang Jiapeng1,Luo Yi1,Kuang Shilong1,Luo Kai1,Xiao Zikang1,Peng Xiangyang2,Huang Zhen2,Wang Zheng2,Fang Pengfei1ORCID

Affiliation:

1. Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China

2. Guangdong Key Laboratory of Electric Power Equipment Reliability, Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China

Abstract

In this study, silicone rubber (SiR) with 0, 90, and 180 parts of aluminum hydroxide (Al(OH)3, ATH) contents prepared in the laboratory was treated in a certain concentration of NO2 for 0, 12, 24, and 36 h. Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and thermogravimetry (TG) were used to study the changes in the surface structure and thermal stability of SiR, as well as the influence of Al(OH)3 on the properties of SiR. According to AFM, the root-mean-square roughness of ATH-90 SiR was 192 nm, which was 2.7 times of ATH-0 SiR. With the incorporation of ATH, the surface of SiR became more susceptible to corrosion by NO2. According to FT-IR and XPS, with the increase in aging time, the side chain Si-CH3 of polydimethylsiloxane (PDMS) was oxidized gradually and a few of nitroso -NO2 groups were formed. According to TG, the incorporation of ATH caused the maximum decomposition rate temperature of PDMS to advance from 458.65 °C to 449.37 and 449.26 °C, which shows that the thermal stability of SiR degraded by adding ATH. After NO2 aging, a new decomposition stage appeared between 75 and 220 °C (stage Ⅰ), and this decomposition trend was similar to aluminum nitrate, which was proven to reduce the thermal stability of PDMS. The effects of NO2 on the surface structure and thermal stability of different ATH contents of silicone rubber were preliminarily clarified by a variety of characterization methods, which provided ideas for the development of silicone rubber resistant to NO2 aging.

Funder

National Natural Science Foundation of China

Technology Project of China Southern Power Grid Co., Ltd.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3