Invasiveness of Impatiens parviflora in Carpathian Beech Forests: Insights from Soil Nematode Communities

Author:

Renčo Marek1ORCID,Jurová Jana1,Čerevková Andrea1ORCID

Affiliation:

1. Laboratory of Plant Nematology, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia

Abstract

Invasive plants are capable of homogenizing both aboveground and belowground biota and, along with climate change, are recognized as one of the biggest threats to global biodiversity. Soil nematode communities reflect the surroundings they inhabit and are therefore frequently employed as biological indicators of soil condition. In this study, soil properties and nematode communities in Carpathian beech forest floor covered by dense vegetation of invasive Impatiens parviflora (small balsam) were investigated over two vegetation seasons. We assumed that the spread of invasive I. parviflora could influence soil fauna through litter accumulation when established and could also change several soil properties, consequently altering soil nematode communities. A total of 52 nematode species were found in the soil samples. The mean number of species varied from 18 to 31, but did not significantly differ between invaded and uninvaded plots across all sampling dates. However, redundancy analysis indicated that the nematode community in plots with small balsam differed significantly from that in uninvaded plots, reflecting different proportions of genera in the two communities. Invasion by small balsam significantly enhanced the relative abundance of bacterivores, whereas it decreased the abundance of plant parasites and root-fungal feeders, mainly in the spring and summer season. Ordination of nematode species along the structure index and enrichment index trajectories revealed a maturing food web, low to moderately disturbed in the I. parviflora invaded soils as well as in uninvaded forest plots. Decomposition channels of soil food webs in both plots were balanced and fungal–bacterial mediated, although low values of the channel index suggested prevailing bacterial decomposition. Our study reveals that the expansion of I. parviflora moderately influenced the composition of nematode communities and the soil food web, increased soil nitrogen, carbon and C/N ratio, but did not modify soil acidity.

Funder

Slovak scientific agency VEGA

Publisher

MDPI AG

Reference60 articles.

1. National and European perspectives on climate change sensitivity of the habitats directive characteristic plant species;Normand;J. Nat. Conserv.,2007

2. Lookwood, J.L., Hoopes, M.P., and Marchetti, M.P. (2007). Invasion Ecology, Blackwell.

3. The importance of biological inertia in plant community resistance to invasion;Delcourt;J. Veg. Sci.,2003

4. Why forests appear resistant to exotic plant invasions: Intentional introductions, stand dynamics, and the role of shade tolerance;Martin;Front. Ecol. Environ.,2009

5. Über Impatiens parviflora DC. als Agriophyt in Mitteleuropa;Trepl;Diss. Bot.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3