Abstract
Modeling the behavior of pedestrians is an important tool in the analysis of their behavior and consequently ensuring the safety of pedestrian traffic. Children pedestrians show specific traffic behavior which is related to cognitive development, and the parameters that affect their traffic behavior are very different. The aim of this paper is to develop a model of the children-pedestrian’s speed at a signalized pedestrian crosswalk. For the same set of data collected in the city of Osijek—Croatia, two models were developed based on neural network and multiple linear regression. In both cases the models are based on 300 data of measured children speed at signalized pedestrian crosswalks on primary city roads located near a primary school. As parameters, both models include the selected traffic infrastructure features and children’s characteristics and their movements. The models are validated on data collected on the same type of pedestrian crosswalks, using the same methodology in two other urban environments—the city of Rijeka, Croatia and Enna in Italy. It was shown that the neural network model, developed for Osijek, can be applied with sufficient reliability to the other two cities, while the multiple linear regression model is applicable with relatively satisfactory reliability only in Rijeka. A comparative analysis of the statistical indicators of reliability of these two models showed that better results are achieved by the neural network model.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献