Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image

Author:

Zhou Jingjing,Zhou Zhixiang,Zhao Qingxia,Han Zemin,Wang Pengcheng,Xu Jie,Dian Yuanyong

Abstract

Precise growing stock volume (GSV) estimation is essential for monitoring forest carbon dynamics, determining forest productivity, assessing ecosystem forest services, and evaluating forest quality. We evaluated four machine learning methods: classification and regression trees (CART), support vector machines (SVM), artificial neural networks (ANN), and random forests (RF), for their reliability in the estimation of the GSV of Pinus massoniana plantations in China’s northern subtropical regions, using remote sensing data. For all four methods, models were generated using data derived from a SPOT6 image, namely the spectral vegetation indices (SVIs), texture parameters, or both. In addition, the effects of varying the size of the moving window on estimation precision were investigated. RF almost always yielded the greatest precision independently of the choice of input. ANN had the best performance when SVIs were used alone to estimate GSV. When using texture indices alone with window sizes of 3 × 5 × 5 or 9 × 9, RF achieved the best results. For CART, SVM, and RF, R2 decreased as the moving window size increased: the highest R2 values were achieved with 3 × 3 or 5 × 5 windows. When using textural parameters together with SVIs as the model input, RF achieved the highest precision, followed by SVM and CART. Models using both SVI and textural parameters as inputs had better estimating precision than those using spectral data alone but did not appreciably outperform those using textural parameters alone.

Funder

the national key research and development plan

Publisher

MDPI AG

Subject

Forestry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3