Estimation of Aboveground Oil Palm Biomass in a Mature Plantation in the Congo Basin

Author:

Migolet Pierre,Goïta KalifaORCID,Ngomanda Alfred,Mekui Biyogo Andréana Paola

Abstract

Agro-industrial oil palm plantations are becoming increasingly established in the Congo Basin (West Equatorial Africa) for mainly economic reasons. Knowledge of oil palm capacity to sequester carbon requires biomass estimates. This study implemented local and regional methods for estimating palm biomass in a mature plantation, using destructive sampling. Eighteen 35-year-old oil palms with breast height diameters (DBH) between 48 and 58 cm were felled and sectioned in a plantation located in Makouké, central Gabon. Field and laboratory measurements determined the biomasses of different tree compartments (fruits, leaflets, petioles, rachises, stems). Fruits and leaflets contributed an average of 6% to total aboveground palm biomass, which petioles accounted for 8%, rachises for 13% and the stem, 73%. The best allometric equation for estimating stem biomass was obtained with a composite variable, formulated as DBH2 × stem height, weighted by tissue infra-density. For leaf biomass (fruits + leaflets + petioles + rachises), the equation was of a similar form, but included the leaf number instead of infra-density. The allometric model combining the stem and leaf biomass yielded the best estimates of the total aboveground oil palm biomass (coefficient of determination (r2) = 0.972, p < 0.0001, relative root mean square error (RMSE) = 5%). Yet, the model was difficult to implement in practice, given the limited availability of variables such as the leaf number. The total aboveground biomass could be estimated with comparable results using DBH2 × stem height, weighted by the infra-density (r2 = 0.961, p < 0.0001, relative RMSE (%RMSE) = 5.7%). A simpler model excluding infra-density did not severely compromise results (R2 = 0.939, p < 0.0003, %RMSE = 8.2%). We also examined existing allometric models, established elsewhere in the world, for estimating aboveground oil palm biomass in our study area. These models exhibited performances inferior to the best local allometric equations that were developed.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Forestry

Reference40 articles.

1. Évaluation des Ressources Forestières Mondiales 2015: Comment les Forêts de la Planète Changent-Elles?,2016

2. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015

3. Logging of rainforest and conversion to oil palm reduces bioturbator diversity but not levels of bioturbation

4. Quantification of oil palm biomass and nutrient value in a mature plantation. I, Above-ground biomass;Khalid;J. Oil Palm Res.,1999

5. Safeguarding forests from smallholder oil palm expansion by more intensive production? The case of Ngwei forest (Cameroon)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3