Driving Factors and Risk Assessment of Rainstorm Waterlogging in Urban Agglomeration Areas: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China

Author:

Liu Fan,Liu Xiaoding,Xu Tao,Yang Guang,Zhao YaolongORCID

Abstract

Understanding the driving factors and assessing the risk of rainstorm waterlogging are crucial in the sustainable development of urban agglomerations. Few studies have focused on rainstorm waterlogging at the scale of urban agglomeration areas. We used the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) of China as a case study. Kernel density estimation (KDE) and spatial autocorrelation analysis were applied to study the spatial distribution characteristics of rainstorm waterlogging spots during 2013–2017. A geographical detector (GD) and geographically weighted regression (GWR) were used to discuss the driving mechanism of rainstorm waterlogging by considering eight driving factors: impervious surface ratio (ISR), mean shape index of impervious surface (Shape_MN), aggregation index of impervious surface (AI), fractional vegetation cover (FVC), elevation, slope, river density, and river distance. The risk of rainstorm waterlogging was assessed using GWR based on principal component analysis (PCA). The results show that the spatial distribution of rainstorm waterlogging in the GBA has the characteristics of multicenter clustering. Land cover characteristic factors are the most important factors influencing rainstorm waterlogging in the GBA and most of the cities within the GBA. The rainstorm waterlogging density increases when ISR, Shape_MN, and AI increase, while it decreases when FVC, elevation, slope, and river distance increase. There is no obvious change rule between rainstorm waterlogging and river density. All of the driving factors enhance the impacts on rainstorm waterlogging through their interactions. The relationships between rainstorm waterlogging and the driving factors have obvious spatial differences because of the differences in the dominant factors affecting rainstorm waterlogging in different spatial positions. Furthermore, the result of the risk assessment of rainstorm waterlogging indicates that the southwest area of Guangzhou and the central area of Shenzhen have the highest risks of rainstorm waterlogging in GBA. These results may provide references for rainstorm waterlogging mitigation through urban renewal planning in urban agglomeration areas.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guangdong Province, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3