Numerical and Economic Analysis of Hydronic-Heated Anti-Icing Solutions on Underground Park Driveways

Author:

Kayaci Nurullah12,Kanbur Baris Burak3

Affiliation:

1. Department of Mechanical Engineering, Yildiz Technical University, 34349 Istanbul, Turkey

2. Department of Mechanical Engineering, Tekirdag Namik Kemal University, 59860 Tekirdag, Turkey

3. Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

Snow and ice forming on the entrance and exit driveways of underground car parks of buildings brings serious difficulties and risks in safe parking for vehicles in winter. Even though traditional methods such as chemical salt and snow plowing reduce slippery conditions on driveways, they also result in infrastructure- and environment-related damages. Hydronic heating is an alternative way to prevent snow and ice forming; thereby, the hydronic heating driveway (HHD) is a promising technique for energy-efficient and environment-friendly solutions. This study presents a time-dependent three-dimensional numerical heat transfer model for HHD applications with realistic boundary conditions and meteorological data in the MATLAB environment. After developing the numerical heat transfer model, the model is applied to a case study in Istanbul, Turkey and followed by an economic comparison with the commercial electrically-heated driveways (EHD) method that is applied in two different ways; applying the electric cables in (i) whole driveway and (ii) only tire tracks. Different escalation rates in natural gas and electricity, hot fluid inlet temperature, air temperature, and the number of parallel pipes are the main parameters in the case study. Results show that the decrease in pipe spacing drops the investment cost term but it needs a higher supplied fluid temperature for anti-icing, and therefore the operating cost term increases. Among other cases was the number of parallel pipes, with 50 being the most economically feasible solution for all air temperatures ranging from 0 °C to −10 °C. The economic comparison shows that the EHD with only tire tracks has the minimum total cost as it significantly decreased both the operating and investment cost terms. In case of an anti-icing requirement on the whole road surface, the HHD system was found to be preferable to the EHD whole driveway scenario at air temperatures of 0 °C and −5 °C, while it is more beneficial only for the high electricity escalation rates at the ambient temperature of −10 °C.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3