Performance of Enhanced Problematic Soils in Roads Pavement Structure: Numerical Simulation and Laboratory Study

Author:

Abdullah Gamil M. S.1ORCID

Affiliation:

1. Civil Engineering Department, College of Engineering, Najran University, Najran 55461, Saudi Arabia

Abstract

The deficiency of high-quality soils in Saudi Arabia’s southern and northern regions, as well as along the Arabian Gulf coasts, is regarded as one of the most common issues with the construction of roads. High compressibility, low shear strength, substantial volume change (particularly in Sabkha), and low bearing capacity are the most typical issues with these problematic soils. In this study, finite element simulations were performed using the Plaxis 3D software v20 to simulate the performance and study the critical responses (fatigue, rutting strains, and damage ratio) of an enhanced pavement structure with a geogrid reinforcement resting on the naturally problematic Sabkha subgrade. A normal asphalt concrete layer, a base layer of Sabkha soil stabilized with Foamed Sulfur Asphalt (FSA), and a sand dune subbase layer comprised the pavement structure. For each layer, the model’s input parameters were a mix of laboratory and literature data. The simulation was performed on a pavement structure without reinforcement and on another section enhanced with a geogrid positioned at various locations to determine the ideal placement for lowering the important responses such as fatigue, rutting stresses, and damage ratio. The nonlinear behavior of an FSA–Sabkha base, sand subbase layer, and Sabkha subgrade was simulated using the hardening soil model, whereas the asphaltic concrete layer and geogrid material were simulated using the linear elastic model. The findings of the simulations demonstrated that placing geogrid reinforcement at the top of the subgrade layer resulted in the greatest reduction in horizontal tensile (fatigue) and vertical compressive (rutting) strains, as well as vertical displacement (32.71%, 13.2%, and 14.2%, respectively). In addition, geogrid reinforcement greatly reduced the fatigue damage ratio (33% to 55%), although the reduction in the rutting damage ratio was slightly lower (14% to 30%). The simulation results were validated using a wheel tracking machine and it was clear that there is a reasonable agreement between the results.

Funder

National Research Priorities funding program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference57 articles.

1. Akili, W. (2006). Unsaturated Soils 2006, American Society of Civil Engineers.

2. Evaluation of foamed sulfur asphalt stabilized soils for road applications;Abdullah;Constr. Build. Mater.,2015

3. Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust;Dahim;J. Rock Mech. Geotech. Eng.,2017

4. Stabilisation of soils with emulsified sulphur asphalt for road applications;Abdullah;J. Rock Mech. Geotech. Eng.,2019

5. Abdullah, G.M.S. (2014). Modeling the Behavior of Sulfur Modified Foamed and Emulsified Asphalt Soils Mixes for Local Road Applications. [Ph.D. Thesis, King Fahd University of Petroleum and Minerals].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3