Influence on Sample Determination for Deep Learning Electromagnetic Tomography

Author:

Zhao Pengfei1ORCID,Liu Ze1ORCID

Affiliation:

1. The School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China

Abstract

Deep learning (DL) has been frequently applied in the image reconstruction of electromagnetic tomography (EMT) in recent years. It offers the potential to achieve higher-quality image reconstruction. Among these, research on samples is relatively scarce. Samples are the cornerstone for both large and small models, which is easy to ignore. In this paper, a deep learning electromagnetic tomography (DL-EMT) model with nine elements is established. Complete simulation and experimental samples are obtained based on this model. On the sample sets, the reconstruction quality is observed by adjusting the size and configuration of the training set. The Mann–Whitney U test shows that beyond a certain point, the addition of more samples to the training data fed into the deep learning network does not result in an obvious improvement statistically in the quality of the reconstructed images. This paper proposes a CC-building method for optimizing a sample set. This method is based on the Pearson correlation coefficient calculation, aiming to establish a more effective sample base for DL-EMT image reconstruction. The statistical analysis shows that the CC-building method can significantly improve the image reconstruction effect in a small and moderate sample size. This method is also validated by experiments.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3