Energy Performance Evaluation of Shallow Ground Source Heat Pumps for Residential Buildings

Author:

Shah Archan,Krarti MoncefORCID,Huang Joe

Abstract

This paper evaluates the energy performance of shallow ground source heat pumps using the state-of-art whole building energy simulation tool. In particular, the paper presents a systematic and easy to implement approach to model the energy performance of shallow and helical ground heat exchangers and assess their energy efficiency benefits to heat and cool buildings. The modeling approach is based on the implementation of G-functions, generated using a validated numerical model, in a state-of-art whole building energy simulation tool. Both the numerical model and the simulation tool are applied to assess the energy performance of various shallow geothermal systems designed to meet heating and cooling needs for detached single-family homes in California. Specifically, a series of sensitivity analyses is conducted to determine the energy performance of the shallow geothermal systems in 16 locations representing all California climate zones. It is found that the suitability and the efficiency of the shallow geothermal systems vary widely and depend on several factors including their design specifications as well as the climate conditions. Compared with conventional air-to-air heat pumps, the shallow ground source heat pumps can be more energy efficient in most climate zones in California except those locations with extreme weather conditions resulting in either heating or cooling only operation. Moreover, configurations of shallow ground source heat pumps with 16 boreholes with 6.7 m (22 ft) depth are found to be cost-effective in several California climate zones.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3