The Effect of Resorcinol on the Kinetics of Underpotentially Deposited Hydrogen and the Oxygen Evolution Reaction, Studied on Polycrystalline Pt in a 0.5 M H2SO4 Solution

Author:

Kuczyński MateuszORCID,Łuba MateuszORCID,Mikołajczyk TomaszORCID,Pierożyński Bogusław

Abstract

This article reports on the influence of resorcinol (RC) on the kinetics of underpotential deposition of hydrogen (UPD of H) and the oxygen evolution reaction (OER), studied on a polycrystalline Pt electrode in a 0.5 M sulphuric acid supporting solution. It is well known that both PEM fuel cells and water electrolysers’ electrodes often contain significant amounts of nanostructured Pt or other types of noble metal particles. These materials provide the superior catalytic activity of electrochemical reactions such as OER (oxygen evolution reaction), HER (hydrogen evolution reaction) and ORR (oxygen reduction reaction). The trace amounts of phenolic substances contained in air or water could be harmful (when in contact with a fuel cell/water electrolyser’s working environment) to the abovementioned catalytic surfaces. Hence, they could potentially have severe detrimental effects on the kinetics of these processes. The results obtained in this work provided evidence for the detrimental role of Pt surface-adsorbed resorcinol molecules (or their electrodegradation products) on the kinetics of UPD of H and the oxygen evolution reaction. The above was revealed through evaluation of the associated charge-transfer resistance and capacitance parameters, comparatively derived on a platinum electrode, for the initial and the resorcinol-modified H2SO4 electrolyte.

Funder

Ministry of Science and Higher Education

University of Warmia and Mazury in Olsztyn

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3