Abstract
This article reports on the influence of resorcinol (RC) on the kinetics of underpotential deposition of hydrogen (UPD of H) and the oxygen evolution reaction (OER), studied on a polycrystalline Pt electrode in a 0.5 M sulphuric acid supporting solution. It is well known that both PEM fuel cells and water electrolysers’ electrodes often contain significant amounts of nanostructured Pt or other types of noble metal particles. These materials provide the superior catalytic activity of electrochemical reactions such as OER (oxygen evolution reaction), HER (hydrogen evolution reaction) and ORR (oxygen reduction reaction). The trace amounts of phenolic substances contained in air or water could be harmful (when in contact with a fuel cell/water electrolyser’s working environment) to the abovementioned catalytic surfaces. Hence, they could potentially have severe detrimental effects on the kinetics of these processes. The results obtained in this work provided evidence for the detrimental role of Pt surface-adsorbed resorcinol molecules (or their electrodegradation products) on the kinetics of UPD of H and the oxygen evolution reaction. The above was revealed through evaluation of the associated charge-transfer resistance and capacitance parameters, comparatively derived on a platinum electrode, for the initial and the resorcinol-modified H2SO4 electrolyte.
Funder
Ministry of Science and Higher Education
University of Warmia and Mazury in Olsztyn
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)