The Biological Drying of Municipal Waste in an Industrial Reactor—A Case Study

Author:

Latosińska JolantaORCID,Żygadło MariaORCID,Dębicka Marlena

Abstract

One of the methods of municipal solid waste (MSW) treatment is biodrying. The literature describes mainly the results obtained in a laboratory- and a pilot-scale reactor. The manuscript presents the results of MSW treatment in a full-scale bio-drying reactor (150 m3). The reactor is operated in one of the Polish installations specializing in mechanical-biological treatment (MBT). During the 14 day period of biodrying in the reactor, the parameters of MSW such as the moisture, temperature, loss on ignition (LOI), and net heating value (NHV) were examined. The temperature of the air in the reactor was also examined. The research also included changes in the above-mentioned parameters of MSW located in three parts of the reactor: the front, middle, and back. The test results showed that the moisture content of the waste decreased from the initial level of 55% to the level of 30%. This was accompanied by an increase in the NHV from 6.3 MJ kg−1 to 9.6 MJ kg−1. At the same time, the LOI decreased from 68% d.m. to 45% d.m. The LOI decrease is not favorable from the point of view of using MSW as refuse-derived fuel (RDF), as was expected in the final usage stage. The results have application value as the plant operator, having at their disposal the controlling of the reactor’s ventilation and the temperature inside the reactor, should select the speed of the moisture removal from MSW at such a level as to minimize the LOI decrease.

Funder

The project is supported by the program of the Minister of Science and Higher Education under the name: "Regional Initiative of Excellence

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference34 articles.

1. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Wastehttps://eur-lex.europa.eu

2. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directiveshttps://eur-lex.europa.eu/search.html?scope=EURLEX&text=Directive+2008%2F98%2FEC+of+the+European+Parliament+and+of+the+Council+of+19+November+2008+on+Waste+and+Repealing+Certain+Directives&lang=es&type=quick&qid=1643509255451

3. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3