Microstructural Characterization and Magnetic, Dielectric, and Transport Properties of Hydrothermal La2FeCrO6 Double Perovskites

Author:

Yi Kang1,Wu Zhiwei1,Tang Qingkai1,Gu Jiayuan1,Ding Jie1,Chen Liangdong1,Zhu Xinhua1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China

Abstract

Double perovskite La2FeCrO6 (LFCO) powders were synthesized via the hydrothermal method, which crystallized in an orthorhombic (Pnma) structure and exhibited a spherical morphology with an average particle size of 900 nm. Fourier transform infrared spectroscopy demonstrated the presence of fingerprints of vibrational modes of [FeO6] and [CrO6] octahedra in the powders. The XPS spectra revealed dual oxide states of Fe (Fe2+/Fe3+) and Cr (Cr3+/Cr4+) elements, and the oxygen element appeared as lattice oxygen and defect oxygen, respectively. The LFCO powders exhibited weak ferromagnetic behavior at 5 K with a Curie temperature of 200 K. Their saturation magnetization and coercive field were measured as 0.31 μB/f.u. and 8.0 kOe, respectively. The Griffiths phase was observed between 200 K and 223 K. A butterfly-like magnetoresistance (MR)–magnetic field (H) curve was observed in the LFCO ceramics at 5 K with an MR (5 K, 6 T) value of −4.07%. The temperature dependence of resistivity of the LFCO ceramics demonstrated their semiconducting nature. Electrical transport data were fitted by different conduction models. The dielectric behaviors of the LFCO ceramics exhibited a strong frequency dispersion, and a dielectric abnormality was observed around 260 K. That was ascribed to the jumping of electrons trapped at shallow levels created by oxygen vacancies. The dielectric loss showed relaxation behavior between 160 K and 260 K, which was attributed to the singly ionized oxygen vacancies.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3