Rational Design of TiO2@g-C3N4/CNT Composite Separator for High Performance Lithium-Sulfur Batteries to Promote the Redox Kinetics of Polysulfide

Author:

Dong Lingling1,Jiang Wen1,Pan Kefeng1,Zhang Lipeng2

Affiliation:

1. School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China

2. School of Materials and New Energy, South China Normal University, Shanwei 516600, China

Abstract

Lithium–sulfur batteries (LSB) show excellent potential as future energy storage devices with high energy density, but their slow redox kinetics and the shuttle effect seriously hinder their commercial application. Herein, a 0D@2D composite was obtained by anchoring polar nano-TiO2 onto a 2D layered g-C3N4 surface in situ, and a functional separator was prepared using multi-walled carbon nanotubes as a conductive substrate. Due to their long-range conductivity, multi-walled carbon nanotubes make up for the low conductivity of TiO2@g-C3N4 to some extent. A lithium–sulfur battery prepared with a modified separator exhibited excellent long-term cycle performance, a good lithium ion diffusion rate, and rapid redox kinetics. The initial specific discharge capacity of the composite was 1316 mAh g−1 at 1 C, and a high specific discharge capacity of 569.9 mAh g−1 was maintained after 800 cycles (the capacity decay rate per cycle was only 0.07%). Even at the high current density of 5 C, a specific capacity of 784 mAh g−1 was achieved. After 60 cycles at 0.5 C, the modified separator retained the discharge capacity of 718 mAh g−1 under a sulfur load of 2.58 mg cm−2. In summary, the construction of a heterojunction significantly improved the overall cycle stability of the battery and the utilization rate of active substances. Therefore, this study provides a simple and effective strategy for further improving the overall performance and commercial application of lithium–sulfur batteries.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Shandong Province National Natural Science Foundation

Key Research and Development Program of Shandong Province

State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources

Guangdong Province Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3