Mechanistic Insights into Electronic Current Flow through Quinone Devices

Author:

Conrad Lawrence1ORCID,Alcón Isaac2ORCID,Tremblay Jean Christophe3ORCID,Paulus Beate1ORCID

Affiliation:

1. Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany

2. Catalan Institute of Nanoscience and Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and Barcelona Institute of Science and Technology (BIST), Campus Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain

3. Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine, 1 Bd Arago, 57070 Metz, France

Abstract

Molecular switches based on functionalized graphene nanoribbons (GNRs) are of great interest in the development of nanoelectronics. In experiment, it was found that a significant difference in the conductance of an anthraquinone derivative can be achieved by altering the pH value of the environment. Building on this, in this work we investigate the underlying mechanism behind this effect and propose a general design principle for a pH based GNR-based switch. The electronic structure of the investigated systems is calculated using density functional theory and the transport properties at the quasi-stationary limit are described using nonequilibrium Green’s function and the Landauer formalism. This approach enables the examination of the local and the global transport through the system. The electrons are shown to flow along the edges of the GNRs. The central carbonyl groups allow for tunable transport through control of the oxidation state via the pH environment. Finally, we also test different types of GNRs (zigzag vs. armchair) to determine which platform provides the best transport switchability.

Funder

Ministerio de Ciencia e Innovación

CERCA Programme from Generalitat de Catalunya and was supported by the Severo Ochoa program and is currently supported by the Severo Ochoa Centres of Excellence programme

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference72 articles.

1. Electric Field Effect in Atomically Thin Carbon Films;Novoselov;Science,2004

2. The Electronic Properties of Graphene;Guinea;Rev. Mod. Phys.,2009

3. Graphene: Status and Prospects;Geim;Science,2009

4. Epitaxial Graphene;Berger;J. Phys. D Appl. Phys.,2012

5. How Silicon Leaves the Scene;Sutter;Nat. Mater.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3