Affiliation:
1. Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery & Henan Key Laboratory of Special Protective Materials, Material Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang 471023, China
Abstract
An effective approach for the large-scale fabrication of conducting polyaniline (PANI) using in situ anodic electrochemical polymerization on nickel foam which had been coated in aryl diazonium salt (ADS)-modified graphene (ADS-G). In the present work, ADS-G was used as a high surface-area support material for the electrochemical polymerization of PANI. The electrochemical performances of the ADS-G/PANI composites exhibited better suitability as supercapacitor electrode materials than those of the PANI. The ADS-G/PANI composites achieved a specific capacitance of 528 F g−1, which was higher than that of PANI (266 F g−1) due to excellent electrode–electrolyte interaction and the synergistic effect of electrical conductivity between ADS-G and PANI in the composites. These findings suggest that the ADS-G/PANI composites are a suitable composite for potential supercapacitor applications.
Funder
National Natural Science Foundation of China
Henan Science and Technology Department of China
Program for Science and Technology Innovation Talents in the University of Henan Province
Education Department of Henan Province
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献