Theoretical Investigation of Delafossite-Cu2ZnSnO4 as a Promising Photovoltaic Absorber

Author:

Kang Seoung-Hun1,Kang Myeongjun2,Hwang Sang Woon3,Yeom Sinchul1,Yoon Mina1,Ok Jong Mok2,Yoon Sangmoon3

Affiliation:

1. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

2. Department of Physics, Pusan National University, Busan 46241, Republic of Korea

3. Department of Physics, Gachon University, Seongnam 13120, Republic of Korea

Abstract

In the quest for efficient and cost-effective photovoltaic absorber materials beyond silicon, considerable attention has been directed toward exploring alternatives. One such material, zincblende-derived Cu2ZnSnS4 (CZTS), has shown promise due to its ideal band gap size and high absorption coefficient. However, challenges such as structural defects and secondary phase formation have hindered its development. In this study, we examine the potential of another compound, Cu2ZnSnO4 (CZTO), with a similar composition to CZTS as a promising alternative. Employing ab initio density function theory (DFT) calculations in combination with an evolutionary structure prediction algorithm, we identify that the crystalline phase of delafossite structure is the most stable among the 900 (meta)stable CZTO. Its thermodynamic stability at room temperature is also confirmed by the molecular dynamics study. Excitingly, this new phase of CZTO displays a direct band gap where the dipole-allowed transition occurs, making it a strong candidate for efficient light absorptions. Furthermore, the estimation of spectroscopic limited maximum efficiency (SLME) directly demonstrates the high potential of delafossite-CZTO as a photovoltaic absorber. Our numerical results suggest that delafossite-CZTO holds promise for future photovoltaic applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3