Effects of Biochar and Synthetic Polymer on the Hydro-Physical Properties of Sandy Soils

Author:

Alkhasha Arafat,Al-Omran Abdulrasoul,Aly Anwar

Abstract

Synthetic polymers, such as polyacrylamide (PAM), and biochar are generally used as soil amendments to improve soil properties. This paper explores a laboratory column experiment conducted to investigate the effects of biochar (pyrolysis at 400–450 °C) and polymers, with different application rates, on the hydro-physical properties of sandy soil. The experiment evaluated four rates each of biochar (0.0% (C), 2% (B1), 4% (B2), 6% (B3) and 8% (B4)) and polymers (0.0% (C), 0.2% (P1), 0.4% (P2), 0.6% (P3), and 0.8%(P4)), as well as a mixture of them. The infiltration rate decreased significantly when a mixture of biochar and polymers was adopted. B1 showed a decrease of 32.73% while a mixture of 8% (B4) and (0.8%) P4 exhibited a decrease of 57.31%. The polymers increased the infiltration rate at low concentrations (P1 and P2) and reduced it at high concentrations (P3 and P4). The cumulative evaporation decreased significantly for most treatments. B1 recorded the highest decrease in cumulative evaporation with a percentage decrease of 31.9%. The highest decrease in hydraulic conductivity (Ks) was for B1. However, the mixture of B4 and P4 resulted in the highest increase in soil moisture content at field capacity compared to the control and other treatments. P4 and the mixture of B2 and P2 showed significant (p < 0.05) increases in the percentage of stable aggregate (SA) in fraction size (0.25–0.125 mm). Although the mixture of B4 and P4 had the highest increase in soil moisture content, this study recommends using the B1 treatment on sandy soil in arid environments due to its strong hydro-physical properties and affordability.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3