RAFFIA: Short-term Forest Fire Danger Rating Prediction via Multiclass Logistic Regression

Author:

Wang LeiORCID,Zhao Qingjian,Wen Zuomin,Qu Jiaming

Abstract

Forest fire prevention is important because of human communities near forests or in the wildland-urban interfaces. Short-term forest fire danger rating prediction is an effective way to provide early guidance for forest fire managers. It can therefore effectively protect the forest resources and enhance the sustainability of the forest ecosystem. However, relevant existing forest fire danger rating prediction models operate well only when applied to distinct climates and fuel types separately. There are desires for an effective methodology, which can construct a specific short-term prediction model according to an evaluation of the data from that specific region. Moreover, a suitable method for prediction model construction needs to deal with some big data related computing challenges (i.e., data diversity coupled with complexity of solution space, and the requirement of real-time forest fire prevention application) when massively observed heterogeneous parameters are available for prediction (e.g., meteorology factor, the amount of litter in the area, soil moisture, etc.). To capture the influences of multiple prediction factors on the prediction results and effectively learn from fast cumulative historical big data, artificial intelligence methods are investigated in this paper, yielding a short-term Ratings of Forest Fire Danger Prediction via Multiclass Logistic Regression (or RAFFIA) model for forest fire danger rating online prediction. Experimental evaluations conducted on a sensor-based forest fire prevention experimental station show that RAFFIA (with 98.71% precision and 0.081 root mean square error) is more effective than the Least Square Fitting Regression (LSFR) and Random Forests (RF) prediction models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3