Is the Groundwater in the Hunshandake Desert (Northern China) of Fossil or Meteoric Water Origin? Isotopic and Hydrogeochemical Evidence

Author:

Zhu Bing-Qi,Ren Xiao-Zong,Rioual Patrick

Abstract

To gain an insight into the origin of groundwater in the Hunshandake Desert (HSDK), stable and radioactive isotopes and the major ion hydrochemistry of groundwater, as well as other natural waters, were investigated in this desert. The results showed that the groundwaters in the HSDK are freshwater (total dissolved solid (TDS) < 700 mg/L) and are depleted in δ2H and δ18O when compared with the modern precipitation. The major water types are the Ca–HCO3 and Ca/Mg–SO4 waters. No Cl-type and Na-type waters occurred in the study area. The ionic and depleted stable isotopic signals in groundwater, as well as the high values of tritium contents (5–25 TU), indicate that the groundwaters studied here are young but not of fossil and meteoric water origin, i.e., out of control by the modern and palaeo-direct recharge. A clear difference in the isotopic signals are observed between the groundwaters in the north and south parts of the study area, but the signals are similar between the groundwaters in the north HSDK catchment and its neighboring catchment, the Dali Basin. The topographical elevation decreases from the south (1396 m a.s.l.) to the north (1317 m a.s.l.) and the Dali (1226 m a.s.l.). Groundwaters in the north are characterized by lower chloride and TDS concentrations, higher tritium contents, higher deuterium excess, and more depleted values of δ2H and δ18O than those in the south. The spatial distribution pattern of these environmental parameters indicates a discrepancy between the hydraulic gradient of groundwater and the isotopic and hydrochemical gradients of groundwater in the HSDK, suggesting different recharge sources between the two parts in the desert. A combined analysis using the isotopic and physiochemical data of natural waters collected from the Dali Basin and the surrounding mountains was performed to investigate this problem. It indicates that groundwaters in the HSDK Desert are recharged from remote mountain areas (about 150–200 km to the east and southeast) but not from the north neighboring catchment.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3