A Novel Approach to Determine Multi-Tiered Nearly Zero-Energy Performance Benchmarks Using Probabilistic Reference Buildings and Risk Analysis Approaches

Author:

Gatt Damien1ORCID,Yousif Charles1ORCID,Cellura Maurizio2,Guarino Francesco2ORCID,Scerri Kenneth3,Tinnirello Ilenia2

Affiliation:

1. Institute for Sustainable Energy, University of Malta, MXK 1531 Marsaxlokk, Malta

2. Department of Engineering, University of Palermo, 90128 Palermo, Italy

3. Department of Systems and Control Engineering, University of Malta, MSD 2080 Msida, Malta

Abstract

The Energy Performance of Buildings Directive (EPBD) mandates European Union Member States (MS) to conduct cost-optimal studies using the national calculation methodology (NCM), typically through non-calibrated asset-rating software. Nearly zero-energy building (NZEB) levels must be derived for each chosen Reference Building (RB), which are generally defined using deterministic parameters. Previous research proposed an innovative cost-optimal method that replaces ‘non-calibrated deterministic RBs’ with ‘probabilistically Bayesian calibrated reference building (RB)’ to better handle building stock uncertainties and diversities when deriving benchmarks. This paper aims to develop a framework to address two research gaps necessary for the successful application of the innovative cost optimal method: (1) providing objective criteria for defining NZEB benchmarks and (2) propagating uncertainties and financial risk for each defined benchmark. A robust approach for defining NZEB benchmarks according to four different ambition levels (low, medium, high, and highest) was developed by objectively considering distinct points from multiple cost-optimal plots employing different financial perspectives. Risk analysis is then performed for each defined benchmark by propagating risk from the posterior calibration parameter distributions to visualize and statistically quantify the financial risk, including robust risk, that the private investor could face for reaching each derived benchmark ambition level. The innovative cost-optimal methodology that incorporates the developed framework was applied to a hotel RB case study. The results showed that the developed framework is capable of deriving distinct benchmarks and quantitatively uncovering the full financial risk levels for the four different renovation ambition levels. The current cost-optimal method was also performed for the hotel case study with the RB defined determinitically and using the non-calibrated NCM software, SBEM-mt v4.2c. It was found that the financial feasibility and energy-saving results per benchmark are significantly more realistic and transparent for the proposed innovative cost-optimal method including a better match between the simulated and metered energy consumption with a difference of less than 1% in annual performance. Thus, the performance gap between calculated and actual energy performance that is synonymous with the EPBD methodology, as reported in the literature, is bridged. The case study also showed the importance of the risk analysis. Performing the cost-optimal analysis for a Bayesian calibrated RB using the mean value of the posterior calibrated parameter distributions without propagating uncertainty produced highly optimistic results that obscured the real financial risk for achieving the higher ambition levels of the NZEB benchmarks. Consequently, the developed framework demonstrated a time-bound tightening approach to achieve higher energy performance ambitions, improve risk transparency to private investors, and facilitate more targeted policies towards a net zero-carbon status. Thus, the proposed method considering parameter uncertainty and calibrated RBs is instrumental for devising robust policy measures for the EPBD, to achieve a realistic and long-lasting sustainable energy goal for European buildings.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference70 articles.

1. European Commission (2012). Commission Delegated Regulation

2. (EU) No 244/2012 of 16 January 2012 Supplementing Directive 2010/31/EU of the European Parliament and of the Council on the Energy Performance of Buildings by Establishing a Comparative Methodology Framework for Calculating Cost-Optimal Levels of Minimum Energy Performance Requirements for Buildings and Building Elements, European Commission. Technical Report.

3. European Commission (2012). Guidelines Accompanying Commission Delegated Regulation

4. (EU) No 244/2012 of 16 January 2012 Supplementing Directive 2010/31/EU of the European Parliament and of the Council on the Energy Performance of Buildings by Establishing a Comparative Methodology Framework for Calculating Cost-Optimal Levels of Minimum Energy Performance Requirements for Buildings and Building Elements, European Commission. Technical Report.

5. Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive;Gatt;Renew. Sustain. Energy Rev.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3