A Study of the Physical and Mechanical Properties of Yellow River Sediments and Their Impact on the Reclamation of Coal-Mined Subsided Land

Author:

Sun Huang1ORCID,Hu Zhenqi12ORCID,Wang Shuai1

Affiliation:

1. College of Geosciences and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

2. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Coal mining in China has resulted in numerous subsided areas, exacerbating land scarcity issues. The Yellow River carries a high sediment load of nearly 1.6 billion tons annually. Cleaning up the accumulated silt is costly and takes up land. Reusing the sediment from the Yellow River to fill and reclaim the subsided areas caused by coal mining addresses both sedimentation and land reclamation issues, killing two birds with one stone. Nonetheless, technical challenges have emerged, such as machinery sinking into the soil, difficulty draining water, and poor soil quality improvement. To tackle these issues, understanding the physical and mechanical properties of Yellow River sediment is essential. Results show that the average particle size (D50) is 0.08 mm, categorized as fine-grained sandy soil with a relatively uniform particle size distribution. The permeability coefficient is 2.91 × 10−3 cm·s−1, similar to that of silty soil, indicating the feasibility for filling reclamation. However, the low permeability requires drainage improvement to accelerate construction timelines. The internal friction angle of the sediment ranges from 34.67° to 31.76°, with a cohesion from 20.79 to 23.92 kPa. To ensure safe and stable construction, machinery must not sink into the fill material. It is recommended to enhance drainage to about 13% for quicker drainage and stable construction. The sediment has a compression coefficient of 0.05 MPa−1, indicating low compressibility. Mechanical compression is not economically viable during the reclamation process. Design elevation (H) and fill elevation (h) should account for cumulative deformation settlement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3