Formation of Fe Nanoparticles by Ion Implantation Technique for Catalytic Graphitization of a Phenolic Resin

Author:

Idesaki Akira,Yamamoto Shunya,Sugimoto Masaki,Yamaki TetsuyaORCID,Maekawa Yasunari

Abstract

Ion implantation technique was employed to introduce iron nanoparticles (Fe NPs) into a carbon precursor polymer with the aim of forming of a graphitic nanostructure through catalytic graphitization by the introduced Fe NPs. A phenolic resin was implanted by 100 keV Fe+ ions with ion fluence of 1 × 1014–1 × 1016 ions/cm2 at ambient temperature under vacuum, and subsequently heat-treated at 800 °C in a nitrogen gas atmosphere. It was found that the particle size of Fe NPs could be controlled in the range of 5–30 nm by the Fe+ ion fluence. Additionally, it was found that a nanosized turbostratic graphite structure with mean interlayer distance of 0.3531 nm, which is consisted of shell-like carbon layers and intricately distorted carbon layers, was formed around the Fe NPs. The ion implantation technique is one of the advantageous ways to introduce size-controlled fine metal NPs which are effective for the formation of graphitic nanostructure from a carbon precursor polymer.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3