Efficient Adsorption Performance of Lithium Ion onto Cellulose Microspheres with Sulfonic Acid Groups

Author:

Xu Chenxi,Yu Tianlin,Peng JingORCID,Zhao Long,Li Jiuqiang,Zhai Maolin

Abstract

The separation of Li+ from an aqueous solution has received much attention in recent years because of its wide application in batteries and nuclear energy. A cellulose microsphere adsorbent with sulfonic acid groups (named as CGS) was successfully prepared by the pre-irradiation-induced emulsion graft polymerization of glycidyl methacrylate onto cellulose microspheres through subsequent sulfonation and protonation. The adsorption performance of Li+ onto the CGS adsorbent is investigated in detail. The as-prepared CGS adsorbent exhibited fast adsorption kinetics and a high adsorption capacity of Li+ (16.0 mg/g) in a wide pH range from 4 to 10. The existence of K+ and Na+ was found to have the ability to affect the adsorption capacity of Li+ due to the cation-exchange adsorption mechanism, which was further confirmed by X-ray photoelectron spectroscopy (XPS). The column adsorption experiment indicated that the adsorption capacity of CGS agreed well with the batch adsorption, and a fast desorption could be obtained in 10 min. It is expected that CGS has potential usage in the adsorption separation of Li+ from an aqueous solution.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3