An Integrated Approach for the Recovery of Sn from Used Water Adsorbents

Author:

Kaprara EfthimiaORCID,Daskalopoulou Evangelia,Simeonidis KonstantinosORCID,Mitrakas Manassis

Abstract

This research examined a scenario for the recovery of a high-capacity Cr(VI) adsorbent, consisting of Sn6O4(OH)4, after reaching its operational lifetime. To accomplish this target, a sequence of processes involving the spent adsorbent’s decomposition, the separation of Sn/Cr ions, and Sn6O4(OH)4 reconstruction was investigated. Characterization of the saturated adsorbent indicated its extended oxidation to SnO2 during its use according to the occurring Cr(VI) to Cr(III) reduction mechanism, which is responsible for the loading of 19 mg Cr/g. To decompose saturated adsorbent, the optimized process involved the dissolution by HCl using a solid concentration of 10 g/L, a solid to acid mass proportion of 1:20, an increase of the temperature at 75 °C. Such conditions brought a dissolution rate of more than 95% and 92.5%, respectively, of the total Sn and Cr in the spent adsorbent. Then, separation of Cr was succeeded by the addition of hydrazine, which acts as a reducing agent for the transformation of Sn(IV) to Sn(II); the precipitation of Cr(III) at pH 3, and the reconstruction of Sn6O4(OH)4 in a second step after increasing pH to 7. The recovered adsorbent stabilized a higher percentage of Sn(II) than the initial material, which explains the improvement of the removal efficiency by 50% in the Cr(VI) adsorption capacity.

Funder

State Scholarships Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference28 articles.

1. The circular economy;Stahel;Nature,2016

2. Circular Economy Rebound;Zink;J. Ind. Ecol.,2017

3. Pilot-Scale Phosphate Recovery from Secondary Wastewater Effluents;Kalaitzidou;Environ. Process,2016

4. Towards a national circular economy indicator system in China: An evaluation and critical analysis;Geng;J. Clean. Prod.,2012

5. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2015). Climate Change 2013—The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Climate Change 2013—The Physical Science Basis), Cambridge University Press/UNEP.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3