Early Indicators of Student Success

Author:

Attewell Paul,Maggio Christopher,Tucker FrederickORCID,Brooks Jay,Giani MattORCID,Hu XiaodanORCID,Massa Tod,Raoking Feng,Walling David,Wilson Nathan

Abstract

This paper reports the results of a four-state collaboration––Texas, New York, Virginia, and Illinois––that uses Student Unit Record Database Systems that track students from high school into college. The goal is to determine whether it is possible to accurately predict whether individual students will not graduate using very early indicators available at college entry or during the first semester. Using similar statistical models across four state university systems, we identify individual students at greatest risk of non-completion quite accurately at early stages, allowing college staff to prioritize interventions and supports aimed at improving completion for those at greatest risk. Our logistic regression models rely on variables available to university administrators at student entry, including high school GPA, standardized test scores, parental income, remediation requirements, declared major, and college credits attempted in the first semester. Our models do not use gender, race, or ethnicity in determining probability of non-completion, making them useful for public university administrators. The fact that the same factors accurately predict graduation and non-completion in four very different state contexts suggests that similar dynamics are at play across the country. Our findings suggest that current commercial products that require extensive effort from faculty to input data on student progress, to act as an early warning system, may be unnecessary. More easily obtainable data can accurately predict students at risk of non-completion.

Publisher

Florida State University Libraries

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3