PREDICTION OF PARKING SPACE AVAILABILITY USING ARIMA AND NEURAL NETWORKS

Author:

SEBATLI SAĞLAM Aslı1ORCID,ÇAVDUR Fatih2ORCID

Affiliation:

1. Mudanya Üniversitesi, Mühendislik, Mimarlık ve Tasarım Fakültesi, Endüstri Mühendisliği Bölümü

2. BURSA ULUDAĞ ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

It may be critical for drivers to have information about the occupancy rates of the parking spaces around their destination in order to reduce the traffic density, a non-negligible part of which caused by the trips to find an available parking space. In this study, we predict parking occupancy rates (and thus, space availability) using three different techniques: (i) auto-regressive integrated moving average model, (ii) seasonal auto-regressive integrated moving average model and (iii) neural networks. In the implementation phase, we use the data set of the on-street parking spaces of the well-known “SFpark” project carried out in San Francisco. We take into account not only the past occupancy rates of parking spaces, but also exogenous variables that affect the corresponding occupancy rates as day type and time period of the day. We make predictions with different model structures of each of the considered methods for each parking space with different parking occupancy patterns in the data set and then compare the results to find the best model design for each parking space. We also, evaluate the results in terms of the superiority of the methods over each other and note that the performance of neural networks is better than those of the other approaches in terms of the mean squared errors.

Publisher

Journal of Industrial Engineering

Subject

Community and Home Care

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3