CD27+ peripheral blood B-cells are a useful biodosimetric marker in vitro

Author:

Řeháková Z,Šinkora J,Vlková M,Vokurková D,Österreicher J,Vávrová J,Driák D

Abstract

The CD8+ natural killer (NK) subpopulation has recently been identified as a fast and reliable biodosimetric indicator within human peripheral blood mononuclear cells (PBMC) in vitro. In irradiated and subsequently cultivated PBMC, a decrease of the relative number of intact CD3- CD8+ lymphocytes 16 and 48 h after treatment has allowed for estimating the received dose in the range of 0 - 10 Gy and lethal/sublethal dose discrimination, respectively. Here we show that suitable biodosimeters can also be found in the peripheral blood B-cell compartment. Multiparameter flow cytometric analysis of irradiated and subsequently cultivated human PBMC revealed that both the CD27+ and CD21- B-cell subpopulations can be used as biodosimeters and the CD19+CD27+ lymphocytes have proved useful for retrospective determination of the received dose in the range of 0 - 6 Gy. In addition, several CD19+ lymphocyte subsets characterized by co-expression of CD21, CD27 and CD38 have been shown to bear biodosimetric potential, too. However, when important parameters like the original size within the CD19+ compartment, its radiation-induced changes and data variation had been taken into account, the CD27+ subpopulation proved superior to the other B-cell subpopulations and subsets. It appears that, in the dose range of 0 - 6 Gy, the relative decrease of CD27+ B lymphocytes provides more sensitive and reliable data than that of CD8+ NK-cells due mainly to lower data variation. In contrast to CD27+ B-cells, the proportions of CD27+ subpopulations of T-cells were not affected by irradiation. We have also proposed a simple experimental protocol based on full blood cultivation and three-color CD27/CD3/CD19 immunophenotyping as a time-saving and inexpensive approach for practical biodosimetric evaluations on simple, three-to-four color flow cytometers.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3