A Novel Carboxymethylated Mercaptotriazinoindole Inhibitor of Aldose Reductase Interferes With the Polyol Pathway in Streptozotocin-Induced Diabetic Rats

Author:

SOLTESOVA PRNOVA M.,BALLEKOVA J.,GAJDOSIKOVA A.,GAJDOSIK A.,STEFEK M.1

Affiliation:

1. Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic

Abstract

The aim of the present work was to study the effect of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (CMTI), an efficient aldose reductase inhibitor, on sorbitol accumulation in selected organs of streptozotocin-induced diabetic rats in vivo. In addition, the effect of CMTI on aldose reductase back reaction and on sorbitol dehydrogenase was determined. The model of experimental diabetes in male Wistar rats induced by streptozotocin was used. Experimental diabetes was induced by triple intraperitoneal doses of streptozotocin on three consecutive days. In diabetic rats, significant elevation of sorbitol concentration in the sciatic nerve and eye lenses was recorded. CMTI administered intragastrically (50 mg/kg/day) for five consecutive days significantly inhibited sorbitol accumulation in the sciatic nerve, yet it was without effect in eye lenses of diabetic animals. For aldose reductase back reaction, the substrate affinity of glycerol to aldose reductase was one order lower than that of glyceraldehyde in forward reaction. In addition, the back reaction was much slower, characterized by Vmax value of about 30 times lower than that of the forward reaction. Inhibition of aldose reductase by CMTI was characterized by closely related IC50 values in submicromolar range for both forward and back reactions. No significant inhibition of the second enzyme of the polyol pathway, sorbitol dehydrogenase, by 100 μM CMTI was recorded (I=0.9±2.7 %, n=3). To conclude, the presented results showed the ability of CMTI to affect the polyol pathway in diabetic rats in vivo and represent thus a further step in a complex preclinical evaluation of CMTI as a potential agent for treatment of chronic diabetic complications.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3