Polychlorinated Biphenyl 153 in Lipid Medium Modulates Differentiation of Human Adipocytes

Author:

MULLEROVA D.1,PESTA M.,DVORAKOVA J.,CEDIKOVA M.,KULDA V.,DVORAK P.,BOUCHALOVÁ V.,KRALICKOVA M.,BABUSKA V.,KUNCOVA J.,LANGMAJEROVA J.,MULLER L.

Affiliation:

1. Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic

Abstract

Emerging evidence indicates that polychlorinated biphenyls (PCBs) are involved in the development of diabetes mellitus in the obese. The purpose of this study was to determine mechanisms by which PCB 153 (2,2′,4,4′,5,5′-hexachloro-biphenyl) could influence diet-induced obesity and insulin resistance during adipogenesis. Lineage of h-ADMSCs was differentiated either as control (differentiation medium only), or with lipid vehicle modeling high fat nutrition (NuTRIflex) or lipid free vehicle (dimethylsulfoxide) for 28 days with or without PCB 153 daily co-exposure (in three concentrations 0.1, 1, and 10 µM). Gene expression analyses were performed using RT-qPCR at days 4, 10, 21, 24, 28; protein levels Akt and phosphorylated Akt (Phospho-Akt) by Western blot at days 4, and 21. PCB 153 treatment of h-ADMSCs only in lipid vehicle was associated with down regulation of key master genes of adipogenesis: PPARγ, SREBP-1, PPARGC1B, and PLIN2 during the whole process of differentiation; and with increased Akt and decreased Phospho-Akt protein level at day 21. We have shown that PCB 153, in concentration 0.1 µM, has a potential in lipid rich environment to modulate differentiation of adipocytes. Because European and U.S. adults have been exposed to PCB 153, this particular nutrient-toxicant interaction potentially impacts human obesity and insulin sensitivity.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3