The Ratio of Diameters Between the Target Artery and the Bypass Modifies Hemodynamic Parameters Related to Intimal Hyperplasia in the Distal End-to-Side Anastomosis

Author:

GRUS T.,LAMBERT L.1,MATĚCHA J.,GRUSOVÁ G.,ŠPAČEK M.,MLČEK M.

Affiliation:

1. Department of Radiology, First Faculty of Medicine, Charles University in Prague, Czech Republic

Abstract

Hemodynamics in the distal end-to-side anastomosis is related to early development of intimal hyperplasia and bypass failure. In this study we investigated the effect of diameter ratios between the target artery and the bypass at three different angles of the connection. The pulsatile flow field was visualized using particle image velocimetry in transparent models with three different angles of the connection (25°, 45°, 60°) and the diameter ratio between the bypass and the target artery was 4.6 mm : 6 mm, 6 mm : 6 mm, and 7.5 mm : 6 mm. Six parameters including location and oscillation of the stagnation point, local energy dissipation, wall shear stress (WSS), oscillatory shear index, spatial and temporal gradient of WSS and their distribution in the target artery were calculated from the flow field. In the wider bypass, the stagnation point oscillated in a greater range and was located more proximal to the anastomosis. Energy dissipation was minimal in a wider bypass with a more acute angle. The maximum WSS values were tree times greater in a narrow bypass and concentrated in a smaller circular region at the floor of the anastomosis. The oscillatory shear index increased with wider bypass and more acute angle. The maximum of spatial gradient of WSS concentrated around the floor and toe of the anastomosis and decreased with more acute angle and wider bypass, the temporal gradient of WSS was stretched more towards the side wall. Greater bypass to target vessel ratio and more acute anastomosis angle promote hemodynamics known to reduce formation of intimal hyperplasia.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3