Affiliation:
1. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
Abstract
Oxidative stress plays an important role in pressure overload-induced cardiac remodeling. The purpose of this study was to determine whether apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, attenuates pressure overload-induced cardiac remodeling in rats. After abdominal aorta constriction, the surviving rats were randomly divided into four groups: sham group, abdominal aorta constriction group, apocynin group, captopril group. Left ventricular pathological changes were studied using Masson’s trichrome staining. Metalloproteinase-2 (MMP-2) levels in the left ventricle were analyzed by western blot and gelatin zymography. Oxidative stress and apoptotic index were also examined in cardiomyocytes using dihydroethidium and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), respectively. Our results showed that abdominal aorta constriction significantly caused excess collagen deposition and cardiac insult. Treatment with apocynin significantly inhibited deposition of collagen and reduced the level of MMP-2. Furthermore, apocynin also decreased the NADPH oxidase activity, reactive oxygen species production and cardiomyocyte apoptotic index. Interestingly, apocynin only inhibited NADPH oxidase activity without affecting its expression or the level of angiotension II in the left ventricle. In conclusion, apocynin reduced collagen deposition, oxidative stress, and inhibited apoptosis, ultimately ameliorating cardiac remodeling by mechanisms that are independent of the renin-angiotensin system.
Publisher
Institute of Physiology of the Czech Academy of Sciences
Subject
General Medicine,Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献