First Application of Whole Genome Sequencing in Myelinated Retinal Nerve Fibers (MRNF)

Author:

Scott Sills E1,Harrity C,Chu HI,Wang J-W,Wood SH,Tan SL

Affiliation:

1. Center for Advanced Genetics, Regenerative Biology Group, San Clemente, USA

Abstract

Genetic features are currently unknown in myelinated retinal nerve fibers (MRNF). For a 20-year-old asymptomatic female with unilateral MRNF, we performed whole genome sequencing (WGS) by standard workflow protocol to produce contiguous long-read sequences with Illumina DNA PCR-Free Prep. After tagmentation, libraries were sequenced on separate runs via NovaSeq 6000 platform at 2 x 150bp read length. Gene variants included rs2248799, rs2672589, rs7555070, rs247616_T and rs2043085_C all associated with an increased macular degeneration risk, and seven novel variants of uncertain significance. For optic disc enlargement, variants rs9988687_A, rs11079419_T, rs6787363 and rs10862708_A suggested an increased risk for this condition. In contrast, modeling revealed retinal detachment risk was reduced by variants identified at rs9651980_T, rs4373767_T, and rs7940691_T which were among five other previously unreported variants. WGS data placed proband at the 66th and 64th percentiles for disc anomaly and retinal detachment risk, respectively. Additionally, risk determined from 16 loci associated with age-related macular degeneration found the patient to be at the 18th percentile for this diagnosis (i.e., below average genetic predisposition). Fundoscopic findings showed mean RNFL thickness was lower with MRNF (77 OS vs. 96μm OD) and RNFL symmetry was impaired (43 %) but stable between 2020 and 2023. Rim area and cup volume were also substantially different (2.33 OS vs. 1.34mm2 OD, and 0.001 OS vs. 0.151mm3 OD, respectively). As the first known evaluation of MRNF via WGS, these data reveal a mixed picture with variants associated with different risks for potentially related ocular pathologies. In addition, we identify multiple new variants of unknown significance. Factors affecting gene expression in MRNF require further study.

Publisher

Institute of Physiology of the Czech Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3