Comparison of Pulmonary and Extrapulmonary Models of Sepsis-Associated Acute Lung Injury

Author:

Zhou G1,Xie D1,Fan R1,Yang Z1,Du J1,Mai S1,Xie L1,Wang Q1,Mai T1,Han Y1,Lai F1

Affiliation:

1. The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China

Abstract

To compare different rat models of sepsis at different time points, based on pulmonary or extrapulmonary injury mechanisms, to identify a model which is more stable and reproducible to cause sepsis-associated acute lung injury (ALI). Adult male Sprague-Dawley rats were subjected to (1) cecal ligation and puncture (CLP) with single (CLP1 group) or two repeated through-and-through punctures (CLP2 group); (2) tail vein injection with lipopolysaccharide (LPS) of 10mg/kg (IV-LPS10 group) or 20mg/kg (IV-LPS20 group); (3) intratracheal instillation with LPS of 10mg/kg (IT-LPS10 group) or 20mg/kg (IT-LPS20 group). Each of the model groups had a sham group. 7-day survival rates of each group were observed (n=15 for each group). Moreover, three time points were set for additional experimental studying in each model group: 4 hours, 24 hours and 48 hours after modeling (every time point, n=8 for each group). Rats were sacrificed to collect BALF and lung tissue samples at different time points for detection of IL-6, TNF-α, total protein concentration in BALF and MPO activity, HMGB1 protein expression in lung tissues, as well as the histopathological changes of lung tissues. More than 50 % of the rats died within 7 days in each model group, except for the IT-LPS10 group. In contrast, the mortality rates in the two IV-LPS groups as well as the IT-LPS20 group were significantly higher than that in IT-LPS10 group. Rats received LPS by intratracheal instillation exhibited evident histopathological changes and inflammatory exudation in the lung, but there was no evidence of lung injury in CLP and IV-LPS groups. Rat model of intratracheal instillation with LPS proved to be a more stable and reproducible animal model to cause sepsis-associated ALI than the extrapulmonary models of sepsis.

Publisher

Institute of Physiology of the Czech Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3