Biological Analyses of the Effects of TiO2 and PEG-b-PLA Nanoparticles on Three-Dimensional Spheroid-Based Tumor

Author:

Koňáriková K1,Girašková GM,Žitňanová I,Dvořáková M,Rollerová E,Scsuková S,Bizik J,Janubová M,Muchová J

Affiliation:

1. Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic

Abstract

The aim of our study was to monitor the antiproliferative/ cytotoxic and genotoxic effects of both, poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA) and titanium dioxide (TiO2) nanoparticles on the tumor (HT-29, MCF-7, U118MG) and healthy (HEK-293T) cell lines during 2D cultivation and during cultivation in the spheroid form (3D cultivation). Cells or spheroids were cultivated with nanoparticles (0.01, 0.1, 1, 10, 50, and 100 μg/ml) for 72 hours. The cytotoxic effect was determined by the MTT test and the genotoxic effect by the comet assay. We found that 2D cultivation of tumor cell lines with PEG-b-PLA and TiO2 nanoparticles had an anti-proliferative effect on human colon cancer cell line HT-29, human breast cancer cell line MCF-7, human glioma cell line U-118MG during 72h cultivation, but not on control/healthy HEK-293T cells. At the concentrations used, the tested nanoparticles caused no cytotoxic effect on tumor cell lines. Nanoparticles PEG-b-PLA induced significant damage to DNA in HT-29 and MCF-7 cells, while TiO2 nanoparticles in MCF-7 and U-118MG cells. Only PEG-b-PLA nanoparticles caused cytotoxic (IC50 = 7 μg/ml) and genotoxic effects on the healthy cell line HEK-293T after 72h cultivation. The cells which were cultivated in spheroid forms were more sensitive to both types of nanoparticles. After 72h cultivation, we observed the cytotoxic effect on both, the tumor and healthy cell lines.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3