Oxidative Stress and Neuronal NOS Activity: Putative Determinants of Rapid Blood Pressure Increase After Renal Denervation in Anesthetized Rats

Author:

WALKOWSKA A.1,SADOWSKI J.,KOMPANOWSKA-JEZIERSKA E.

Affiliation:

1. Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

Abstract

Long-term effects of renal denervation (DNX) commonly include a decrease in blood pressure (BP), observed in both normotensive animals and various models of hypertension. On the other hand, short term BP responses vary. We examined how post-DNX increase in BP observed in this study depends on baseline metabolic and functional status of animals, with a special interest for the role of oxidative stress. Anesthetized Wistar rats on standard (STD), low-sodium (LS) or high-sodium (HS) diet were used, untreated or pre-treated with tempol, a superoxide scavenger, or N(omega)-propyl-L-arginine (L-NPA), an inhibitor of neuronal NOS (nNOS). Early BP and renal hemodynamic responses were examined to right- and then left-side DNX performed using an own relatively non-invasive technique. Left kidney cortical, outer- and inner-medullary blood flows (CBF, OMBF, IMBF) were continuously recorded as laser-Doppler fluxes. Sequential denervations significantly increased BP to final 19 %, 12 %, and 6 % above control level in HS, LS, and STD groups, respectively. CBF, a measure of total renal perfusion, increased in LS and STD but not in HS rats. Tempol pretreatment prevented the post-denervation BP increase on each diet. Selective inhibition of nNOS prevented BP increase in STD and HS groups, a modest increase persisted in LS rats. We propose that enhanced afferent impulsation from intrarenal chemoreceptors related to oxidative stress in the kidney was the background for acute BP increase after DNX. The response was triggered by a release of brain sympatho-excitatory centers from inhibition by renal afferents, this was followed by widespread sympathetic cardiovascular stimulation.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3