Author:
Wang M,Jiang C,Wang C,Yao Q
Abstract
Central administration of losartan effectively blocked the increase of blood pressure and drinking response induced by angiotensin II (Ang II) or carbachol. However, the relationship between angiotensin AT(1) receptors and the natriuresis induced by brain cholinergic stimuli is still not clear. The purpose of the study is to reveal the role of brain angiotensin AT(1) receptor in the carbachol-induced natriuresis and expression of neuronal nitric oxide synthase (nNOS) in the locus coeruleus (LC) and proximal convoluted tubule (PCT). Our results indicated that 40 min after intracerebroventricular (ICV) injection of carbachol (0.5 microg), urinary sodium excretion was significantly increased to 0.548+/-0.049 micromol x min(-1) x 100 g(-1). Immunohistochemistry showed that carbachol induced an increase of neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the LC and renal proximal tubular cells. After pretreatment with losartan (20 microg), carbachol-induced urinary sodium excretion was reduced to 0.249+/-0.067 micromol x min(-1) x 100 g(-1). The same was true for carbachol-induced increase of nNOS-IR in the LC and PCT. The present data suggest that ICV cholinergic stimulation could induce a natriuresis and upregulate the activity of nNOS in the LC and PCT. The blockade of AT(1) receptors might downregulate the effects induced by carbachol in the LC and PCT. Consequently, we provide a new evidence that brain angiotensinergic pathway and NO-dependent neural pathway contribute to the natriuresis following brain cholinergic stimulation and thus play an important role in the regulation of fluid homeostasis. Furthermore, the final effect of nitric oxide on proximal tubular sodium reabsorption participated in the natriuresis induced by brain cholinergic stimulation.
Publisher
Institute of Physiology of the Czech Academy of Sciences
Subject
General Medicine,Physiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献